Pairwise Independent Random Variables

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pairwise Independent Random Variables

In this lecture we discuss how to derandomize algorithms. We will see a brute force algorithm (enumeration) for derandomization. We will also see that some random algorithms do not need true randomness. Specifically, we will see an example where only pairwise random bits are needed. Next, we will see how we can generate pairwise random values and how this conservation on the amount of randomnes...

متن کامل

Independent random variables

1 Last two lectures ¯ probability spaces ¯ probability measure ¯ random variables and stochastic processes ¯ distribution functions ¯ independence ¯ conditional probability ¯ memoriless property of geometric and exponential distributions ¯ expectation ¯ conditional expectation (double expectation) ¯ mean-square estimation 1

متن کامل

Conditionally independent random variables

In this paper we investigate the notion of conditional independence and prove several information inequalities for conditionally independent random variables. Keywords— Conditionally independent random variables, common information, rate region.

متن کامل

Wavelets for Nonparametric Stochastic Regression with Pairwise Negative Quadrant Dependent Random Variables

We propose a wavelet based stochastic regression function estimator for the estimation of the regression function for a sequence of pairwise negative quadrant dependent random variables with a common one-dimensional probability density function. Some asymptotic properties of the proposed estimator are investigated. It is found that the estimators have similar properties to their counterparts st...

متن کامل

Marcinkiewicz-type Strong Law of Large Numbers for Double Arrays of Pairwise Independent Random Variables

Let { Xij } be a double sequence of pairwise independent random variables. If P {|Xmn| ≥ t}≤ P{|X| ≥ t} for all nonnegative real numbers t and E|X|p( log+ |X|)3 <∞, for 1 <p < 2, then we prove that ∑m i=1 ∑n j=1 ( Xij−EXij ) (mn)1/p → 0 a.s. as m∨n →∞. (0.1) Under the weak condition of E|X|p log+ |X| <∞, it converges to 0 in L1. And the results can be generalized to an r -dimensional array of r...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: The Annals of Probability

سال: 1980

ISSN: 0091-1798

DOI: 10.1214/aop/1176994834